US007356747B2

a2 United States Patent (10) Patent No.: US 7,356,747 B2
Hsiao et al. 45) Date of Patent: Apr. 8, 2008
(54) DECISION SELECTION AND ASSOCIATED 7,185,254 B2* 2/2007 Ishida et al. 714/738
LEARNING FOR COMPUTING ALL
SOLUTIONS IN AUTOMATIC TEST OTHER PUBLICATIONS
PATTERN GENERATION (ATPG) AND
SATISFIABILITY Panda et al. “Who are the Variables in Your Neighborhood” Dept.
of Electrical and Computer Engineering, Univ. of Colorado at
(75) Inventors: Michael S. Hsiao, Blacksburg, VA Boulder; pp. 74-79 , 1995.

Richard Rudell, “Dynamic Variable Ordering for Ordered Binary
Decision Diagrams” pp. 42-47, 1993.

Iyer et al. “Satori—A Fast Sequential Sat Engine for Circuits” Dept
of ECE, University of Cal. pp. 320-325; 2003.

(US); Kameshwar Chandrasekar,
Blacksburg, VA (US)

(73) Assignee: Virginia Tech Intellectual Properties, Marques-Silva et al. “GRASP: A Search Algorithm for Proposi-
Inc., Blacksburg, VA (US) tional Satisfiability” IEEE Transactions on Computers, vol. 48 No.
N S, pp. 506-521; May 1999.
(*) Notice: SUbJeCt. to any dlsclalmer,. the term of this Zhang et al. “Efficient Conflict Driven Learning In a Boolean
patent is extended or adjusted under 35 Satisfiability Solver” pp. 279-285; 2001.
U.S.C. 154(b) by 211 days. Chang et al. “Short Papers” IEEE Transactions on Computer-aided
Design on Integrated Circuits and Systems, vol. 19, No. 1 pp.
(21) Appl. No.: 11/194,543 152-160; Jan. 2000.
Lawrence H. Goldstein “Controllability/Observability Analysis
ty ty y!
(22) Filed: Aug. 2, 2005 Digital Circuits” vol. CAS 26, No. 9; Sep. pp. 685-693; Sep. 1979.
(65) Prior Publication Data (Continued)
US 2006/0031730 Al Feb. 9, 2006 Primary Examiner—James C. Kerveros . .
ftorney, ent, or Irm— 1itham urtis
74) A4 Yy, Ag Fi Whith: C
Related U.S. Application Data Christofferson & Cook, P.C.
(60) i’rozxg(s)iétonal application No. 60/598,444, filed on Aug. (57) ABSTRACT
An all solutions automatic test pattern generation (ATPG)
(51) Inmt. Cl . s . L
engine method uses a decision selection heuristic that makes
GOIR 3128 (2006.01) o . N Lo
use of the “connectivity of gates™ in the circuit in order to
(52) US.Cli oo 714/738 obtain a compact solution-set. The “svmmetry in search-
(58) Field of Classification Search 714/738, P : YIIEEy

states” is analyzed using a “Success-Driven Learning” tech-
nique which is extended to prune conflict sub-spaces. A
metric is used to determine the use of learnt information a
(56) References Cited priori, which information is stored and used efficiently
during “success driven learning”.

714/728, 739
See application file for complete search history.

U.S. PATENT DOCUMENTS
6,886,124 B2* 4/2005 Wangccccceceeerennnn 714/738 4 Claims, 9 Drawing Sheets

conflict reached equal cut-set reached earlier
[[§] solution reached Un-explored search-space

N1
{19, a),
G _

2
119,70),7 \{19.14}
N6
{19.7,10}/ @ {19.20}
N5

{19,20,9)
N4

US 7,356,747 B2
Page 2

OTHER PUBLICATIONS

Wang et al. “A Signal Correlation Guided ATPG Solver And Its
Applications For Solving Difficult Industrial Cases” pp. 436-441;
Jun. 2003.

Iyer et al. “On the A Development of an ATPG based Satisfiability
Checker” University of California; 2002.

Kang et al. “SAT-Based Unbounded Symbolic Model Checking” pp.
840-843; Jun. 2003.

Ken L. McMillan “Applying SAT Methods in Unbounded Symbolic
Model Checking” pp. 250-264; 2001.

Li et al. “A Novel All-Solutions Solver for Efficient Preimage
Computation” Computer Science; 2004.

Sheng et al. “Efficient Preimage Computation Using A Novel
Success-Driven ATPG” Computer Science; 2003.

Bern et al. “Short Papers” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, No. 1 pp.
127-130; Jan. 1996.

Gergov et al. “Efficient Boolean Manipulation With OBDD’s can be
Extended to FBDD’s” IEEE Transactions on Computers, vol. 43,
No. 10, pp. 1197-1209; Oct. 1994.

Aloul et al. “MINCE: A Static Global Variable-Ordering for SAT
and BDD” 2001.

Chung et al. “Efficient Variable Ordering Heuristics for Shared
ROBDD” pp. 1690-1693.

Giraldi et al. “EST: The New Frontier in Automatic Test-Pattern
Generation” 27th ACM/IEEE Design Automation Conference;
1990.

Wang et al. “Conflict Driven Techniques for Improving Determin-
istic Tet Pattern Generation” pp. 87-93; 2002.

Chandrasekar et al. “ATPG-Based Preimage Computation: Efficient
Search Space Pruning with ZBDD” pp. 117-122; 2003.

Pomeranz et al. “An Efficient Nonenumerative Method to Estimate
the Path Delay Fault Coverage in Combinational Circuits”IEEE
Transactions on Computer-Aided Design of Intergrated Circuits and
Systems, vol. 13, No. 2, pp. 240-250; Feb. 1994.

* cited by examiner

U.S. Patent Apr. 8, 2008 Sheet 1 of 9 US 7,356,747 B2

N Ty R X
b N
0 — 1 5\ }
f '
: DL
! \0 -—
; \{a.fb}
'I .

——————————

Figure 1A Figure 1B

/1 # paths through a gate = # paths in its fanin_cone *
Il # paths in its fanout_cone

Il # paths in fanin/fanout cone of each gate is counted once
function guidance_measures(levelized_ckt) {
Initialize the dyn_msr of all gates to 0

/1 step1. Initialize the dyn_msr of gates in the cutset
for (each gate in the cut_set)
dyn_msr[gate] = stat_msr[gate];

/1 step 2. Update the dyn_msr for all gates in
I/ the fanout_cone of the cutset
for (each gate in fanout_cone of cut_set)
dyn_msr[gate] = Sum(dyn_msr[fanins]) *
#paths[fanout_cone]

Figure 2

U.S. Patent

Circuit:

Apr. 8, 2008

Sheet 2 of 9

US 7,356,747 B2

R3
Fan-in cone
of cut-set
R1

N ~o _-
CUTSET "“~=eacoooe=-"

Gates that are not directly connected to the cut-set

—————
- -

Gates in between the
cut-set and objective

R2

-~

*.] Obj

Figure 3

US 7,356,747 B2

Sheet 3 of 9

Apr. 8, 2008

U.S. Patent

ay a4nbi
9 € € I [4 4 i (w) s1inp
g's| se| v'e Ll L L | (0D °LD) dYODS
y [6] 1 p |9 q| e 9)es
Oy 8inbiH g a.nbiH

leuiuuay 1puod - (O]
[eulwsa) uongn|os - H

leutwia) 10D - []
[euluLIa) uonn|os - H

vt 8nbi-

US 7,356,747 B2

Sheet 4 of 9

Apr. 8, 2008

U.S. Patent

VG ainbi
g6 8.nbi

Ao1°2'61}

aoeds-yoseas pasojdxa-un E
Ja|ea payoeal jas-ino [enba O3]

payoeas uonnjos [S |
payoeal iuod [J]

U.S. Patent Apr. 8, 2008 Sheet 5 of 9

= . X
O Db 1 \‘ }
f
i
c i
x> !g V1 obj: z=1
1 /

-

- -

Figure 6A

US 7,356,747 B2

Note: a = X
(b | ¢ | d)
0 0 1
0 1 0
0 1 1
0 1 X
_ 0 X 1)

Figure 6B

U.S. Patent

Apr. 8, 2008 Sheet 6 of 9 US 7,356,747 B2
Circuit | Heuristic #solns #bktrks #nodes T (s) |

$3384 -1 Dist 464M Abort
COP 19M Abort

SCOAP 1.8G 2.6K 2K 0.69

Stat-Conn 1.9G 1K 396 043

Dyn-Conn 1.7G 518 398 0.62
$3384 -2 Dist 0 Abort
COP 0 Abort
SCOAP 0 Abort
Stat-Conn 0 Abort

Dyn-Conn 108M 158K 25K 78.58
$3384 -3 Dist 0 Abort
COP . 0 Abort

SCOAP 1G 69K 57K 10.64

Stat-Conn 1.1G 16K 7K 2.19

Dyn-Conn 1.8G 9K 14K 4.7

s13207 - 1 Dist 798K 349 342 0.44

COP 241K 255 250 0.42

SCOAP 467K 338 339 0.44

Stat-Conn 974K 782 784 0.51

Dyn-Conn 952K 195 193 0.64
$13207 -2 Dist 1.5G Abort
cop 2.5G Abort

SCOAP 1.4G 40K 7K 9.24
Stat-Conn 2.5G Abort

Dyn-Conn 889M 3.8K 2.7K 5.22

$13207 -3 Dist 0 1526 0 1.32

CoP 0 2220 0 1.45

SCOAP 0 1836 0 1.41

Stat-Conn 0 100 0 0.41

Dyn-Conn 0 215 0 1.06
§9234 - 1 Dist 537TM Abort

COP 41M 43K 31K 5.19

SCOAP 367M 34K 28K 4.32
Stat-Conn 3.9G Abort

Dyn-Conn 1.6G 8K 6.5K 7.81

§9234 -2 Dist 0 1.9K 0 0.56

6(0) 0 409 0 0.36

SCOAP 0 1.6K 0 0.53

Stat-Conn 0 15 0 0.32

Dyn-Conn 0 19 0 0.34

§9234 -3 Dist 0 42K 0 5.8
COP 0 Abort
SCOAP 0 Abort

Stat-Conn 0 24K 0 3.02

Dyn-Conn 0 7K 0 6.28

Note a) #solns: number of solution cubes
Note b) Different guidance heuristics lead to different solution cubes

Figure 7-1

U.S. Patent

Apr. 8, 2008 Sheet 7 of 9 US 7,356,747 B2
L Circuit l Heuristic #solns #bktrks #nodes T (s)]
$5378 - 1 Dist 0 361 0 0.28
Ccop 0 59 0 0.26
SCOAP 0 93 0 0.26
Stat-Conn 0 8 0 0.25
Dyn-Conn 0 3 0 0.26
$5378 -2 Dist M 3K 1.3K 0.71
CcoOP 82K 1.1K 525 0.5
SCOAP 218K 1.9K 779 0.58
Stat-Conn 6.3M 887 392 0.49
Dyn-Conn 299K 389 178 0.66
§5378 - 3 Dist 43K 302 303 042
cop 26K 521 505 0.44
SCOAP 32K 467 440 0.43
Stat-Conn 13K 286 278 0.41
Dyn-Conn 19K 178 167 0.52
s15850-1 Dist 308M Abort
cop 2.4G Abort
SCOAP 605M 38K 27K 7.25
Stat-Conn 3.8G Abort
Dyn-Conn 1.2G 313K 26K 59.92
s15850-2 Dist 3.5G Abort
COP 3.3G Abort
SCOAP 1.6G Abort
Stat-Conn 3.6G Abort
Dyn-Conn 1.7G 177K 101K 269.99
s15850-3 Dist 0 Abort 0 69.83
cop 0 2 0 0.68
SCOAP 0 2 0 0.68
Stat-Conn 0 1 0 0.71
Dyn-Conn 0 1 0 0.71
$38584 - 1 Dist 104M 20K 20K 13
COP 1G Abort
SCOAP 1.1G Abort
Stat-Conn 1.3G 51K 28K 29.71
Dyn-Conn 1.4G 21K 8.5K 27.57
$38584 -2 Dist 1.4G 4.5K 4K 1.8
CoP 1G Abort
SCOAP 1.5G 3.8K 3.2K 1.81
Stat-Conn 1.2G 3.2K 3.1K 1.67
Dyn-Conn 1.5G 1.7K 1.7K 7.79
s38584 -3 Dist 3.5G Abort
cop 1.3G Abort
SCOAP 3.7G Abort
Stat-Conn 1.2G Abort
Dyn-Conn 1.9G 46K 45K 203.05

Note a) #solns: number of solution cubes
Note b) Different guidance heuristics lead to different solution cubes

Figure 7-2

US 7,356,747 B2

Sheet 8 of 9

Apr. 8, 2008

U.S. Patent

g aunbi-

$§2qn2 uonjos juaaffip 01 praj soustinay 2ouvpind uaaffiq (q 310N
§aqno uoynjos fo 1aquiny :Sujosy (v 210N

STO0 T £9 €4 uuo)-ukQq €0 98% LIL Mgl wuodD-uig

ST0 SS 811 09 uu0)-1e1g S€0 S6L MET Mog uuoD-Els

¥ZT0 96 €€l w dvoOs €0 vEL 516 M91 dVO0DS

ST0 8L 16 1z d0D 9€'0 I MET M8 dOO

pE0 901 LL ZI ’a €-€19 || g0 ez g€ Mge mid £-714

sT0 Izl Tl 14 uuo)-ukq b0 8€€ ¥9L M1l wuod-ukq

€20 €01 8Z1 AS'E wuoD-IEIS 8€'0 oYL M1 IS uuoDAes

SE0 M9T A9T NS6 dVOOS 9 A96 M99 I dv0OS

ST0 L8] 12 ovs dOD $9°0 S 9 T dOD

ZE0 I D, 14 MoE 1 z-£1q woqy NI9z 1id z-71q

STO S 0L 719 uuoD-uig 650 S6T 0S MLy uuoD-ukq

V0 €6 €11 MT1 wuop-els 1€0 €6L 8L6 8Tl wuop-ImS

vZ0 LOT 44 D (4 dvODS €e ML M8 ASty dVOOS

¥Z0 6bl SL1 43 SN (00) 9¢0 ST N8I MS8 dOD

¥Z0 t¥ op p6S 181Q 1-€19 || 661 MOI Mgz M9g6 1A 1-219

€20 LS o 1€ uuo)-ukq 1L0 906 (4 MLz uuoD-ukq

€20 €€ 6¢ w uuo)-1e1§ X AL > (3 D (TANR e B LN

¥Z0 0§ 6S 9¢ dvO0S woqy NS dVOOS

€20 SP 09 33 dod 0 Mz MSE MzEe dOD

ZART: LOT 811 1Id 019 || 6¥0 MTT ¢ MoT 1sid $09
| 5)1 sopoug symyq# sujosg ousunsy | wnox) [()L Sopouf SYIYq# sujosg onsuney | ymon) |

US 7,356,747 B2

Sheet 9 of 9

Apr. 8, 2008

U.S. Patent

6 ainbiH

sanbiuy2aj y10q 40f pauIn1qo a.4p saqnd ujosH WS 3Y) ‘DIUBE] "Pasn St u0H-Ulqg (q 10N
§2Qno uoNnN|os fo Jaquinu Sujosy (v 20N

819 9LS Al A1 AS9 819 9LS AT1 A1 <9 45!
CL9¢ S0L 681 ST 65¢ CL'SE p: k! P iy ! PSS! 65¢S 119
6y'C8C MAL'T A0C 89 AS9 (4474 A9 AC01 289 2AS°9 09
99°'8p All 201 0 0 v lv A01 ATI 0 0 068SIS
L6'8¢ 8 NTT AE 186 I'vl ALT P4 AL N186 | 1°0S8SIS
pT 16T 6§ ALL 0 0 61°¢el A9S AP8 0 0 1'peT6S
IL'T6y 061 00T 0 0 pajsneyxs spes-ino [V L7768
960 11T 1244 LT NS08 9¢'0 11T 9y LT NS08 8LESS
01°¢C ¢C8 0TI 018 (413 99°'¢C 56 ALTI 018 [4{) |R¥44 &
£L'v9 A0S A0S AT D (11%3 paisneyxa $)es-no |y 1 X448
19°LS AY0T A8 1 JET] AL81 68°6¢ 0TI A9¢C AETT A3l 69¢CI18
870 Sy L 6C 6 970 9¢ S6 67 6 vov1s
870 8¢ £ g6 LS 970 6¢ Ll €6 LS 88V 1S
9'IL A8 . 4! 0 0 IL0L 8 P (41! 0 0 £981S
$T0 3 144 ¥8 143 S0 iy V6 1] 123 9Tss
¥ 0 81 14 €9 144 §T0 61 18 €9 144 s
LT0 4! 101 €61 00T 9¢'0 LOT 99¢ €6l 00T 4%
(s)owm pasn-sowmy $19S-INOH SOPOUY SUJOSY || (S)dwI) pIsn-SaWIny S19S-INdH Sapouy SU[OSH PP

O3 195-117) UM

SINIJA 138-1N)) INOYPIM

US 7,356,747 B2

1

DECISION SELECTION AND ASSOCIATED
LEARNING FOR COMPUTING ALL
SOLUTIONS IN AUTOMATIC TEST

PATTERN GENERATION (ATPG) AND
SATISFIABILITY

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of the filing date of
provisional application Ser. No. 60/598,444 filed on Aug. 4,
2004, filed by Michael S. Hsiao and Kameshwar Chan-
drasekar for “Decision Selection and Associated Learning
for Computing all Solutions in Automatic Test Pattern
Generation (ATPG) and Satisfiability”.

GOVERNMENT LICENSE RIGHTS

The U.S. Government has a paid-up license in this inven-
tion and the right in limited circumstances to require the
patent owner to license others on reasonable terms as
provided by the terms of National Science Foundation
Grants CCR-0196470 and CCR-0305881.

DESCRIPTION
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to an automatic
test pattern generation (ATPG) engine and, more particu-
larly, to a method that quickly analyzes and efficiently
models a new decision selection mechanism based on con-
nectivity gates in a circuit for the purpose of computing all
solutions for a target objective. Symmetry in search states is
analyzed for success driven learning to reduce the number of
backtraces incurred during the solution search. A new metric
is implemented for determining the use of learned informa-
tion for storage and later use. The invention has application
in semiconductor design and manufacture as well as other
design verification environments.

2. Background Description

In recent years, Automatic Test Pattern Generation
(ATPG)/Boolean Satisfiability (SAT) based methods have
offered a potential substitute for Reduced Ordered Binary
Decision Diagrams (ROBDD) based methods. Unlike
ROBDD based methods that can suffer from memory explo-
sion, ATPG/SAT based methods can perform image or
preimage computation with reduced memory requirements.
Image/Preimage computation is performed by modifying the
underlying ATPG algorithm, to generate all the available
solutions, and it is a key step in sequential equivalence
checking and unbounded model checking. In addition to
design verification, ATPG engines that are able to generate
multiple solutions can also be used to generate different and
distinct multiple-detect test vectors for a given fault, thus
improving the overall defect coverage of a test suite.

Traditionally, ATPG engines are guided by the testability
measures of the circuit. Several heuristics have been devel-
oped to determine these measures that help to find any
available solution quickly. The distance based testability
measures account for the difficulty of testing a gate, based on
its distance from the primary inputs and primary outputs.
The 0/1 probability at the output of each gate in the circuit
have been computed and used as testability measures. Cer-
tain numbers, called SCOAP measures, have been derived
for each gate in the circuit, that represent the difficulty of

15

25

40

45

2

justifying and propagating a value. All these testability
measures guide the ATPG engine while backtracing from the
objective to select a decision variable. Improvements to
obtain better testability measures have been incorporated
using the concept of super-gates. However, the worst-case
complexity of obtaining these measures can he exponential.
Recently, a better approximation for the testability measures
has been obtained using implications generated in the cir-
cuit. Based on implication reasoning, a correlation factor
that accounts for signal correlations in the circuit is esti-
mated. However, all these testability measures aim at finding
a single solution quickly. Likewise, in SAT, many variable/
decision selection strategies have been proposed. such as
MOMS (Maximum Occurences in clause of Minimum
Size), DLIS (Dynamic Largest Individual Sum) and VSIDS
(Variable State Independent Decaying Sum). However, these
methods lack the structural information available to ATPG
engines. SAT and ATPG have been integrated to develop an
ATPG based SAT solver. The variable selection strategy of
ATPG is used due to their superiority in choosing variables
related to the objective.

“All-solutions ATPG” based methods have found appli-
cations in Model checking sequential circuits, and they can
also improve the defect coverage of a test suite, by gener-
ating distinct multiple-detect patterns. Conventional deci-
sion selection heuristics and learning techniques for an
ATPG engine were originally developed to quickly find any
available (single) solution. Such decision solution heuristics
may not be the best for an “all-solutions ATPG” engine,
where all the solutions need to be found. In this paper, we
explore new techniques to guide an “all-solutions ATPG
engine.” An all-solutions ATPG attempts to build a complete
decision tree (which can be reduced to a graph by sharing
common sub-trees) that is essentially a Free Binary Decision
Diagram (Free BDD). Conventionally, the testability mea-
sures of the circuit guide an ATPG engine to select decisions
as they search for the solution. As a result, the variable order
in the Free BDD conforms to the testability measures of the
circuit. It is necessary to bias the variable order in such a
way that we obtain a compact Free BDD as a whole. A
compact Free BDD helps to reduce the size of the decision
tree and in turn speeds up the ATPG engine. If the number
of solutions in very large, in the order of billions, then it is
not possible to store each solution oneby-one due to memory
and time limitation. This phenomenon is referred to as
solution explosion and it has been shown that the final
solution-set can be efficiently represented by the decision
tree as a Free BDD. Therefore it is necessary to obtain a
compact Free BDD in order to address the solution explo-
sion problem as well. Furthermore, as each ATPG decision
leads to a different search-state in the decision tree, the
number of search-states can be exponential in the number of
inputs. Since each search-state is stored in a hash table, for
use in success-driven learning, the memory required to store
all of the search-states becomes a critical issue. Storing all
the search-states in a knowledge-base may potentially lead
to memory explosion for large circuits. In order to reduce the
size of the knowledge-base and still benefit from useful
search-states, it may be sufficient to store only the frequently
occurring search-states.

Related work on BDD variable ordering and learning
heuristics includes OBDD based methods that are very
sensitive to their variable order and thus are limited to small
and medium sized circuits. Significant amount of work has
been done on finding an efficient variable ordering tech-
nique. Most of the work aims at placing related variables
together in order to obtain a compact BDD. A PODEM

US 7,356,747 B2

3

based variable ordering technique has been considered for
building ROBDDs. The testability measures of PODEM are
used to back trace to the primary inputs by a depth-first
search and the inputs connected by shorter paths are placed
together. Recently, static variable ordering techniques have
been proposed, and experimental results showed that these
techniques can be better than dynamic variable ordering
techniques. It is supposed that placing connected variables
together and partitioning the variables lead to compact
BDDs and faster SAT. On the other hand, Free BDDs
(FBDDs) are relaxed versions of Ordered BDDs, in which
variables can appear in different orders along different paths
but each variable occurs only once along any given path.
They are more compact than Ordered BDDs and sometimes
lead to exponential savings in memory. Although significant
amount of work has been done to develop good-variable
ordering heuristics for ROBDDs, not much work has been
done for Free BDDs.

In addition to variable selection heuristics, learning plays
an important role in SAT/ATPG based methods. It helps to
overcome the inherent time limitation of these methods and
compete with BDD based methods. Powerful learning tech-
niques have been introduced for ATPG. Efficient conflict-
driven learning techniques have also been introduced for
SAT based methods. Learning techniques have been pro-
posed for an all-solutions SAT solver. These learning tech-
niques improve the efficiency of the SAT solver that is an
integral part of unbounded model checking. The strengths of
both SAT & ATPG have been combined to provide efficient
learning techniques for the sequential justification problem.
It has also been proposed to provide signal correlation
guided learning for an ATPG based SAT solver and obtained
a speedup for hard industrial circuits. In all these aforemen-
tioned ATPG/SAT engines, the knowledge is in the form of
implications, assertions or conflict clauses. Efficient
manipulation of knowledge is required to reduce the over-
head in storing and using the knowledge base.

Recently, a new type of “success-driven learning” that
efficiently prunes the search-space for “ATPG based preim-
age computation” by identifying identical solution-sub-
spaces has been introduced. The Transition Relation is
represented by a levelized circuit and the set of states is
stored in a Free BDD. A PODEM based ATPG engine is
invoked to find all the solutions, resulting in a preimage
where all the current state variables are quantified. Equiva-
lent search-states that lead to the same solution subspace are
identified to prune the search-space. The decision tree
obtained during solution-search, is stored as a Free BDD that
represents the complete preimage set. As solution subspaces
heavily overlap during preimage computation, considerable
savings is obtained in terms of time and memory. “Aug-
mented success driven learning” and “search-state based
conflict driven learning” have been introduced to further
prune the search space for ATPG based preimage computa-
tion. However, conventional testability measures were used
to guide the ATPG engine, resulting in suboptimal all-
solutions FBDDs.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a new decision selection heuristic that makes use of the
“connectivity of gates” in the circuit in order to obtain a
compact solution-set.

20

35

40

60

4

It is another object of the invention to provide a way to
analyze the “symmetry in search-states” that was exploited
in “Success-Driven Learning” and extend it to prune conflict
sub-spaces as well.

It is a further object of the invention to provide a new
metric that determines the use of learnt information a priori,
which information is stored and used efficiently during
“success driven learning”.

According to the invention, there is provided a new
decision selection heuristic that guides an “all-solutions
ATPG engine” to obtain an efficient variable order for the
Free BDD. The invention implements the concept of sym-
metry in search states for ATPG which is based on analysis
of a theoretical formulation for success driven learning. In
order to reduce the number of search-states stored during
success driven learning, the invention provides a new metric
that determines the use of a search-state.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 is a logic diagram illustrating an example of a
search state representative and its decision tree;

FIG. 2 is an algorithm showing the dynamic connectivity
measures for the circuit shown in the logic diagram of FIG.
1

FIG. 3 is an illustration showing the dynamic and static
connectivity for the circuit shown in the logic diagram of
FIG. 1,

FIG. 4 is a logic diagram and contrasting decision trees
used to illustrate the effect of different testability measures;

FIG. 5 is a partial decision tree and logic diagram used to
illustrate a counter-example for Theorem 2;

FIG. 6 is a logic diagram, similar to FIG. 1, and table of
symmetric input assignments;

FIG. 7 is a table of an all solutions ATPG for ISCAS ’89
circuits;

FIG. 8 is a table of an all solutions ATPG for ITC 99
circuits; and

FIG. 9 is a table illustrating the efficiency of the cut-set
metric according to the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

Because an ATPG engine implicitly explores the entire
search-space to generate a solution, “an all-solutions ATPG
engine” must continue and search for the next solution after
each solution is found, until all solutions have been found.
Each decision is considered a node in the decision tree and
the entire search-space is explored to find all solutions. A
few terms are introduced before explaining the concept of
success-driven learning.

Decision Tree: The tree obtained by the branch-and-
bound procedure of ATPG, with input assignments as inter-
nal decision nodes, is called the decision tree.

Search-State: After choosing each decision and perform-
ing logic simulation, logic values of all the internal gates
form a state in the circuit. This internal state of the circuit
after each decision is considered a search-state for the
decision tree.

Cut-set: Consider the circuit as a directed acyclic graph,
C, with edges directed from primary inputs to primary
outputs. If we remove the fanout-stems of a set of gates from

US 7,356,747 B2

5

C to partition the graph into two sub-graphs X and Y, such
that all the edges (that exist in C) across X and Y are directed
from primary inputs to primary outputs, then the set of gates
is called a cut-set.

Cut-set for search-state: Each search-state can be uniquely
represented by a cut-set in the circuit. After each decision,
the cut-set can be obtained by a multiple backtrace from the
ATPG objective. The first frontier of specified nodes,
encountered during backtrace, is the cut-set for search-stare.
In the sequel, we use the term cut-set to refer to “cut-set for
search-state”. Cut-sets that lead to solution subspaces and
their decision tree nodes are stored in a hash-table. For the
circuit in FIG. 1, a partial decision tree is shown. The sets
indicated on the decision edges (e.g., {g} and {g, f, b}) are
cut-sets for the corresponding search-states. For the last
decision (b=0), cut-set {g, f, b} is denoted by the dashed
line, in FIG. 1.

solution/conflict branch: A branch in the decision tree that
has at least-one/no solution below it.

solution/conflict cut-set: A cut-set for the search-state in
the solution/conflict branch.

solution/conflict subspace: A search subspace below a
solution/conflict branch.

The cut-sets that lead to solution sub-spaces can be stored
in a hash-table. A particular solution cut-set in the circuit
will lead to a specific solution subspace in the decision tree.
If the same cut-set is encountered again, then we can simply
link to that portion of the decision tree, instead of re-
searching the same search space. After each decision, we
search for the current cut-set in the hash-table. If an equiva-
lent cut-set exists, we simply link the current branch to the
stored node of the decision tree. Otherwise, we proceed with
the usual search process. In this way, previously encountered
search subspaces are not repeatedly explored using this
technique.

With the help of existing testability measures, conven-
tional ATPG engines backtrace only through the easy (highly
testable) portions of the circuit and stop as soon as one
solution is found. Usually, this solution can be considered as
the easiest solution with respect to the ATPG search process.
However, an “all-solutions ATPG engine” needs to explore
the entire circuit to find all the available solutions. So the
guidance heuristic for an all-solutions ATPG engine need not
necessarily depend on the measures that only focus on the
easier portions of the circuit.

We view the problem of finding all solutions that satisfy
an objective as the process of constructing the decision tree
as quickly as possible. This in turn is the problem of finding
an efficient variable ordering technique for a Free BDD. The
variable ordering heuristic is integrated into the back-trace
routine of the ATPG engine. Unlike the dynamic variable
ordering techniques in BDDs, we do not try to move the
variable up or down to find a suitable position tor a variable.
Instead, after choosing each variable, we dynamically
choose the next variable that is suitable for that position.

A hypergraph is built from the CNF formula and a static
variable order is obtained by partitioning the variables and
placing connected variables together, in order to obtain a
good variable order. It is conjectured that well connected
variables should he placed together for SAT and BDD. In our
technique, we exploit the inherent graph structure of the
circuit to dynamically find the gates that are well connected
(by combinational paths) to the previously made decisions
(represented by search-state in the circuit). After each deci-
sion, we estimate the connectivity of each gate to the
previous decisions. While backtracing, we always choose
the gate that has the highest connectivity measure. In some

10

15

20

25

30

35

40

45

50

55

60

65

6

cases, we only consider the connectivity of a gate to the
objective. In this way, we attempt to put all connected
variables together in the decision tree. Gates that are well
connected are likely to be highly correlated and hence
should be chosen together. In a PODEM based ATPG, we
decide on the primary inputs that are obtained by the
back-trace routine. The following subsections further
explain the concept of connected variables.

At each decision during ATPG, the connectivity of a gate
is estimated as the number of combinational paths that
connect the gate to the cut-set (formed by previous deci-
sions) and the objective. From Graph Theory, a well-known
linear time algorithm is sufficient to compute the number of
paths passing through each gate in the circuit. A similar
algorithm has been used to estimate the fault coverage of
path delay faults. Due to its linear time complexity, the
computation overhead in estimating the connectivity mea-
sures is usually very small and it can easily be integrated into
the backtrace routine of the ATPG engine.

Initially, the number of paths that connect a gate to the
objective and the primary inputs is estimated. This measure
is estimated for all gates in the circuit and stored as a static
connectivity measure. After each decision, a dynamic con-
nectivity measure is assigned for all gates in the fanout cone
of the cut-set. A basic algorithm is shown in FIG. 2. The
gates in the cut-set are initialized to their static measures.
These gates represent the previously made decisions in the
decision tree. The gates outside the cut-set fanin/fanout cone
(R3 in FIG. 3) are not directly connected to the decisions
made so far. So they are initialized to 0. Next, for each gate
in the fanout-cone of the cut-set (R2 in FIG. 3). the number
of paths (dynamic connectivity measure), it occurs in, is
recursively estimated from cut-set to the objective. Note that
the paths due to the gates in R3 are ignored. In this way,
gates that connect the cut-set to the objective are assigned
dynamic connectivity measures depending on their connec-
tivity to the objective and cut-set.

While backtracing from the objective, we will encounter
two types of gates, as illustrated in FIG. 3:

1. Gates in between the cut-set and the objective—R2: For
these gates, we make use of the dynamic connectivity
measures, since it is a representative of the connectivity of
the gate to previous decisions and objective.

2. Gates that are not directly connected to cut-set—R3: For
these gates, we use the static connectivity measures to
select the gate that is well connected to the objective. Note
that the dynamic connectivity measures for these gates are
“0”, because they are not directly connected to the cut-set.
It may be noted that if a gate, g, does not lie in between

the cut-set and objective, i.e., ge R3, then all the gates in the
fanin-cone of g cannot lie in between the cut-set and
ohjective, as shown in FIG. 3. While backtracing, once we
reach a gate with 0-dynamic connectivity measure we can
start using the static connectivity measure for all the gates in
its fanin cone. This helps us to implement an easy single
switch from dynamic connectivity measures to static con-
nectivity measures while backtracing in the circuit.

As discussed above, a cut-set is obtained by a multiple
backtrace from the objective to the primary inputs of the
circuit. Since we are choosing connected variables together,
all elements in the cut-set tend to be closer to each other. As
a result, we are more likely to obtain cut-sets with smaller
widths.

A slight variation of our technique is to select the vari-
ables based on static connectivity measures alone. In that
case, we need not update the dynamic connectivity measures
for every backtrace. Due to its ease of explanation, we use

US 7,356,747 B2

7

the static connectivity measures in this example. FIG. 4
demonstrates our technique for a reconvergent structure that
is present in many circuits. For the circuit shown in FIG. 4,
the objective of the ATPG engine is to find all solutions that
satisfy the objective h=1. The SCOAP measures, (C1, C0)
and our static connectivity based measures, (m) are tabulated
and listed in FIG. 4. The traditional guidance heuristic in
PODEM traverses the path it h-f-a and picks a as the first
decision. Note that there was a choice at gate f on the path
in which either a or e could be selected. a is chosen by
SCOAP since it is easier-to-control when compared to e.
This decision process continues and the final complete
decision tree obtained for all solutions is shown in FIG. 4.
In this tree, a solid edge indicates the 1-branch and a dashed
edge represents the 0-branch for each node.

For the same circuit in FIG. 4, our new heuristic back-
traces through e (after h-f) first, since it occurs in many paths
as compared to a. If we follow our guidance heuristics for
the rest of the backtraces, the corresponding decision tree
obtained is shown in FIG. 4. The first solution obtained by
each technique is highlighted by a dotted enclosure in the
corresponding decision tree. It is seen that SCOAP-guided
ATPG finds the first solution in only two decisions—{a, d},
and our technique finds the first solution in three decisions—
{b, ¢, d}. However, the number of nodes in the decision tree
in FIG. 4 obtained by our technique (five) is less than the
number of nodes in the decision tree obtained by using
SCOAP measures (seven). It may be noted that the nodes,
N4 and N5 in FIG. 4 are identical. These nodes will be
shared in the Free BDD and the effective number of nodes
required to store the solution-set is only four. Through this
example, we see that although SCOAP finds the first solu-
tion in fewer decisions, our technique computes the com-
plete solution-set in a fewer number of decisions.

Search-State Based Symmetry

In this section, we introduce a few definitions and theo-
rems that help to analyze the search-states occurring in the
decision tree of an ATPG engine.

Equivalence: Two search-states are said to be equivalent
if they lead to the same sub-decision tree for a given ATPG.

Symmetry: Two partial input assignments are said to be
symmetric if they form equivalent search-states.

For example, in FIG. 4 the search-states at nodes N4 and
N5 are equivalent and the corresponding partial input
assignments {b,c} and {b} are symmetric. Note that this
notion of symmetry is different from the ones that are
generally used. Unlike previous methods, where permuta-
tions of full specified input assignments and symmetry on
two variables were used, we define symmetry on partial
input assignments that form different decompositions of the
circuit during ATPG.

Theorem 1 If two cut-sets are equal (same), then they
rep-resent equivalent search-states.

Proof: Cut-sets that are equal decompose a circuit to iden-
tical sub-circuits. If the same decision process is used, then
the decision tree for identical sub-circuits will definitely be
isomorphic. Since the sub-decision trees are the same, the
corresponding search-states represented by equal cut-sets
are equivalent.

Theorem 2 All equivalent search-states are NOT necessarily
represented by the same cut-set.

Proof: We prove Theorem 2 by showing a counter-example.
where two different (unequal) cut-sets represent equivalent

10

15

20

25

30

35

40

45

55

60

65

8

search-states. FIG. 5 (B) shows the ISCAS °89 circuit—s27,
modified to find the one-cycle preimage for 001 at the next
state flip-flops. The objective is to justify a 1 at the output of
gate 22 in the circuit. The guidance measures are shown in
brackets near each gate in the circuit. Note that the guidance
measures are only heuristics, and they change the structure
of the decision tree. Different guidance measures lead to
different cut-sets. We show that for a fixed guidance heu-
ristic, different cut-sets can sometimes lead to the same
sub-decision tree.

A partial decision tree obtained during the ATPG is shown
in FIG. 5. The solid edge is the 1-branch and the dashed edge
is the O-branch for each node. The nodes are labeled in
chronological order of decisions. The terminal nodes refer to
a solution or a conflict or an equivalent search-state (due to
equal cut-sets) that was stored earlier. The link for the
equivalent search-state terminals are shown by the node
numbers next to the terminal nodes. For example, the
1-branch of N5 is connected to N4, since the corresponding
cut-sets are equal. It may be observed in the decision tree
that the O-branch of N2 and 1-branch of N6 have isomorphic
sub-trees below them. However, the corresponding cut-sets
are unequal. By definition of equivalence, the two search-
states represented by cut-sets—{19, T0} and {19, 20} are
equivalent. However, the corresponding cut-sets are differ-
ent.

Corollary Success driven learning is a restricted realization
of equivalence in search-stares.

Proof: In success driven learning, we use the cut-sets as a
representative for the search-states. A cut-set is stored only
if it leads to at least one solution. If an exact match for the
solution cut-set occurs again, then we use the cut-set. From
Theorem 2, we saw that unequal cut-sets can also represent
equivalent search-states. On the other hand, even if a search-
state leads to a conflict sub-space then its equivalent search-
state will also lead to a conflict sub-space. This phenomenon
is not exploited in success driven learning.

From the above discussion, it is seen that certain cut-states
exist that lead to the same search sub-space and not identi-
fied by the success driven learning. Since equivalent cut-
states lead to the same search sub-space in general, it is
immaterial if they are solution cut-sets or conflict cut-sets.
As aresult, success driven learning can be extended to prune
conflict subspaces as well.

Cut-Set Occurring Probability

Cut-sets that occur frequently during ATPG help to prune
search subspaces, while other cut-sets may be less useful to
the “all-solutions ATPG engine”. It is desirable to store only
the cut-sets that occur frequently during the search process.
Cut-sets that do not occur again or with low probability of
occurrence can be ignored to save memory without loss of
performance. Therefore, it prompted us to develop a metric
that determines the usefulness of a cut-set. Based on this
metric, we may decide to store a cut-set or ignore it. This
will help to reduce the memory requirement for the knowl-
edge base, without significant loss of information.

A cut-set, C, comprises of a set of specified gates, say

C{g1, 8 8> - - - >)

where, g, is a gate at the frontier of the search-state/cut-set
and, n is the number of gates in the cut-set.

A cut-set can occur multiple times only if it has many
symmetric input assignments. An appropriate way to ana-

US 7,356,747 B2

9

lyze the use of a cut-set is to count the number of symmetries
that generate the same cut-set. If there are many symmetric
assignments, then the cut-set is likely to occur again. For
example, in FIG. 6, the symmetric input assignments that
generate the same cut-set {g, f, b} for the circuit are listed.
It can be observed that it is very time-consuming to count the
number of symmetric assignments that generate the same
cut-set after each decision. Even if we count all the sym-
metric input assignments, a given ATPG engine may not
consider all of them. As an alternative, we estimate the use
of a cut-set using probabilistic measures.

The probability of occurrence of a 0 or 1 at the primary
inputs is initialized to be 0.5. Then, we recursively estimate
the probability of occurrence of a value at the output of each
gate assuming all the inputs are independent. For example,
the probability of occurrence of 1 at the output of an AND
gate is 0.25.

We conducted a second set of experiments to verify the
effectiveness of the cut-set metric for reducing the cut-set
storage. As a reference FIGS. 7 and 8 respectively show an
All Solutions ATPG for ISCAS ’89 circuits (Table 1) and an
All Solutions ATPG for ITC °99 circuits (Table 2). The
ATPG environment was set up similar to the previous
experiments to generate all solutions. In addition, the num-
ber of cut-sets we can store was limited to 300,000. After
each decision, the cut-set was determined and its probability
of occurrence was estimated. Cut-sets with probabilities less
than a fixed CUTSET THRESHOLD were ignored. The
probability of occurrence of the objective was fixed as the
CUTSET-THRESHOLD. The corresponding results are
tabulated in Table 3 of FIG. 9. For each circuit shown in
column 1, columns 2-6 report the number of solutions,
number of BDD nodes, number of stored cut-sets, number of
times the stored cut-sets are used and the time taken without
using the cut-set metric. The number of times the stored-
cutsets, as a whole, are used is counted every time a hash-hit
for a cut-set is successtul. Columns 7-11 report the results
for the same ATPG by storing only the cut-sets with a high
probability of occurrence.

For the objectives in smaller circuits like s349, s444 and
$526, the cut-sets that are stored is reduced. However, since
they are very small in number, all the cut-sets can be easily
stored. On the other hand, in cases where large number of
cut-sets are encountered, as in s1423.1, s4863, b04 and b11,
the number of cut-sets is significantly reduced without
significant loss in time. The main advantage in using the
cut-set metric is exhibited in the cases of s1423 and 59234.
Without using the proposed cut-set metric, all the cut-sets
are exhausted and the ATPG engine fails to complete. The
number of times the stored-cutsets are used varies according
to the target objective in the two methods. Sometimes,
longer cut-sets in the lower part of the decision tree are NOT
stored in the second method. However, the ATPG quickly
makes the fewer decisions to reach the terminal nodes. This
results in fewer hash-hits in the second method without
significant loss in time as seen in bll. On the other hand,
some cut-sets that are used fewer times in the first method
are not available to the second method. So the available
cut-sets are used many times in the second method, leading
to an in-crease in the number of times the stored-cutsets are
used, as seen in s1269 and s15850.1.

Although the metric is helpful to obtain a probabilistic
estimate for the use of a cut-set, a low value does not
completely guarantee that the cut-set will not be re-used
again. This uncertainty may lead to losing useful cut-sets
occasion-ally. In such cases, the ATPG engine may have to
re-search a previously visited search space and take more

30

40

45

10

time as seen in s15850.1. This phenomenon may increase as
the size of the circuit increases due to correlation of gates in
the circuit.

We explored above the factors that govern an all-solutions
ATPG engine. While conventional guidance heuristics for
ATPG are suitable for finding a single solution quickly, they
do not account for the complete-solution set. We presented
a new connectivity based guidance heuristic for an “all-
solutions ATPG engine” that reduces the size of the Free
BDD to store all solutions. We also developed a probabilistic
cut-set metric to determine the future use of stored infor-
mation, learnt during success driven learning. Based on the
cut-set metric, we showed that the knowledge base can be
reduced depending on the CUTSET-THRESHOLD deter-
mined for the cut-set. Experimental results show that we can
achieve significant reductions in memory and our techniques
can guide the ATPG engine to find all the solutions where
conventional guidance heuristics fail. In the future, we plan
to apply partitioning of variables to obtain a better variable
order. We also plan to consider the effect of signal correla-
tions to improve the guidance for ATPG and develop a
dynamic cut-set threshold value to get a better approxima-
tion for the cut-set usability. With these feasible techniques,
we envision a robust ATPG engine that can be effectively
used for model checking sequential circuits as well as for
improving the defect coverage of a test-suite.

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-
cation within the spirit and scope of the appended claims.

The invention claimed is:
1. A method for identifying all states of an electronic
circuit from which a given target state of the electronic
circuit may be reached, the circuit having a plurality of gates
and having a plurality of primary inputs, the target state
representing an objective, wherein the objective is a given
state of at least one of the gates, comprising backtracing
from the objective to the primary inputs, comprising
a) setting a connectivity value, for each of the gates, to an
initial value;
b) generating and storing a branch-and-bound decision for
reaching the objective from a cut-set;
¢) generating a new branch-and-bound decision, the gen-
erating based on a heuristic selecting gates having
higher connectivity with the previously generated and
stored branch-and-bound decisions;
d) computing a new search subspace corresponding to the
new branch-and-bound decision,
e) performing a success-driven learning, comprising
determining whether or not the new search subspace is
equivalent to a previously computed search sub-
space, the determining including comparing the new
cut-set with previously stored cut-sets, and

if the determining identifies the new cut-set as being the
equivalent of a previously stored cut-set, linking the
new search subspace with the previously computed
search subspace corresponding to the same previ-
ously stored cut-set,

f) computing an estimate of a probability of the new
cut-set occurring in a subsequent iteration, wherein the
estimating includes calculating the product of signal
probabilities of specified gates in the cut-set;

g) if the computed estimate for the probability meets a
given probability threshold, storing the new cut-set,
else not storing the new cut-set;

US 7,356,747 B2

11

h) dynamically updating the connectivity for each gate, by
computing the number of paths that connect the gate to
the cut-set, if any, formed by the previously generated
and stored branch-and-bound decisions,

i) repeating steps (b) through (h) until the search is
completed; and

constructing the decision graph based on the stored cut-
sets, the constructed decision graph representing all the
solutions computed for the target objective.

2. The method of claim 1, wherein the step (f) calculating
the product of the signal probabilities of the specified gates
in the cut-set performs the calculation by assuming a given
input signal of value “0” or “1” having equal probability on
all primary inputs, and by assuming the signal values on the
primary inputs being statistically independent, and by recur-
sively calculating the probabilities of output values of the
specified gates in the subset based on said assumptions.

10

15

12

3. The method of claim 2,

wherein the step (g) storing stores new cut-sets in a hash
table representing a decision tree having nodes and
branches, and

wherein step (e) comparing searches the hash-table and if
the searching identifies an equivalent cut-set in said
hash-table, links a current branch of the decision tree to
a shared node of the decision tree.

4. The method of claim 1,

wherein the step (g) storing stores new cut-sets in a hash
table representing a decision tree having nodes and
branches, and

wherein step (e) comparing searches the hash-table and if
the searching identifies an equivalent cut-set in said
hash-table, links a current branch of the decision tree to
a shared node of the decision tree.

#* #* #* #* #*

